Zusammenhang Ableitungen

Wenn man sich ins Gedächtnis ruft, worum es bei der Ableitung geht – um Steigung einer imaginären Tangente und damit um die Steigung an einem bestimmten Punkt der Kurve – dann kann man sich damit gute Eselsbrücken bauen. Die Abbildung zeigt die Ausgangsfunktion mit ihrer ersten, zweiten und dritten Ableitung:

Ausgangsfunktion
Extremstellen

Der Graph der ersten Ableitung der Funktion schneidet genau dort die x-Achse, wo der Graph der Funktion lokale Extrem­stellen besitzt, weil an die­sen Stellen die Steigung null ist (notwendige Bedingung). Sind zudem die Funktionswerte der zweiten Ableitung an diesen Stellen positiv, hat der Graph der Funktion einen oder mehrere Tiefpunkt(e). Sind sie negativ, hat er einen oder mehrere Hochpunkt(e).

Monotonie

Dort, wo die Funktionswerte der ersten Ableitung positiv sind, ist der Graph der Funktion streng mo­noton steigend. Im Intervall negativer Funktions­werte, ist der Graph der Funktion streng monoton fallend.

Wendestellen

Der Graph der zweiten Ableitung der Funktion schneidet genau dort die x-Achse, wo der Graph der Funktion seine Wende­punkte besitzt (notwendige Bedingung). Sind zudem die Funktionswerte der dritten Ableitung ungleich null, hat der Graph der Funktion einen oder mehrere Wendepunkt(e).

Krümmung

Dort, wo die Funktionswerte der zweiten Ableitung positiv sind, ist der Graph der Funktion eine Linkskurve. Im Intervall negativer Funktions­werte, ist der Graph eine Rechtskurve.

Erste Ableitung
Zweite Ableitung
Dritte Ableitung

Man erkennt, dass der Grad der Funktion mit jeder weiteren Ableitung um eins abnimmt:

Alle Funktion

Nach oben